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Abstract 

A method for finding the strongest starting set of reflections 
for multisolution direct methods is proposed and compared 
with the Convergence Method of Germain, Main & 
Woolfson [Acta Cryst. (1970), B26, 274-285]. 

The program MULTAN uses a powerful procedure called 
the 'Convergence Method' (Germain, Main & Woolfson, 
1970) to determine starting sets of reflections for multi- 
solution direct methods and to determine the path of phase 
determination• While the Convergence Method (CM) has 
been described as a method for finding the strongest set of 
starting reflections, in fact it finds the least weak by 
eliminating the weakest reflection at each step of the iterative 
procedure• The formulation presented here directly seeks the 
strongest starting set of reflections. An additional advantage 
of this formulation is that at each stage the information 
required to build trees for phasing is entirely available after 
the starting set has been chosen• In the CM, trees must be 
constructed separately for each starting set. 

Form the matrix 

1 

where the ~oj are the phase angles for the reflections, j ,  that 
participate in phase relationship i, where the matrix is 
summed over all the relationships, and where l, Vl is the 
weight associated with relationship i. The weights may be 
calculated by any appropriate method for evaluating the 
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relative importance of the relationship; for phase triplets a 
possible choice of weights is the x of Germain, Main & 
Woolfson (1970)• Some thought should be given to the 
method of combining the weights as they are summed into 
the matrix• In the examples below, the x's were summed, but 
some other weighting scheme (for example, like the com- 
putation of a's in Germain, Main & Woolfson, 1970) might 
be more effective• A contribution from a quartet relationship 
with phase sum ¢~t to the matrix sum is computed as follows: 

tp~ + ~o 6 - tp2 + tp4 = ¢~1 with weight = gi; 

where ¢~1 is the phase sum (if this is the ith phase relation- 
ship)• From the equation, compute 

(~I ~01 ~ I  (~I 
= I, - - = - - I ,  -- I, 

~01 c~ 6 ~o 2 ~o4 
- I, 

~(P6 ~ 6  
-- 1, 

c~ 1 ~9~o 6 

= 0 .  
c%pj 
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Thus the matrix contribution to the 
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It is clear that this simple formulation cannot be successful 
unless the relationships are linear in phase angles and the 
weights are assumed to be independent of phase angles. 
Otherwise, variable symbols would enter the sums. 

Two rationales for this matrix formulation can be offered. 
The first is that the phases of those reflections to which the 
phase set is most sensitive should be determined first (or fixed 
at the beginning). The second is that those important 
reflections with phase angles which are most easily varied 
must have their phases fixed early. Consider the meaning of 
the matrix which contributes to the sum. If the weight for a 
contributing matrix is large, then the corresponding equation 
is an important one in the set of all equations. In the latter 
case, each of the contributions to the sum is correspondingly 
large. If the element, kl, of the sum matrix is large, then there 
are many equations with large weight which involve the kth 
and lth phase angles. In this case assigning the phase angles 
of the kth and lth reflections will aid in the phasing of many 
other reflections. Correspondingly, if these phase angles are 
not assigned, then these reflections which enter many strong 
relationships will be phased by other (probably weaker) 
reflections through a :veaker chain of phase relationships. 

Several routes to a starting set are possible once the matrix 
sum is formed from all available relationships. The simplest 
is to compute the magnitude (norm) of each row (or column) 
and to choose some number of reflections whose rows have 
large magnitudes to be the starting set. Space-group 
symmetry restrictions on origin fixing must, of course, be 
taken into account. A second procedure might be to choose 
some number of reflections from the row with the largest 
magnitude. Still another method might be to choose 
reflections corresponding to large elements from the eigen- 
vector associated with the smallest eigenvalue. By successive 

choice of smaller elements at each stage (in any method), a 
tree for phase determination may be set up. Clearly some 
thought toward connecting the series of reflections is 
required. 

The first method above has been tried in preliminary tests. 
In the first test, two previously solved structures for which 
poor origins were determined by the CM were used. All 
reflections with I EI > 1.5 were used. For both, fewer 
reflections had a (Germain, Main & Woolfson, 1970) equal 
to zero at elimination if a starting set was chosen by the first 
method described above than by CM. The second test 
involved oxytocin data. All reflections (141) for which IEI 
exceeded 1-8 were included. The CM chose poor origins, 
chiefly with reflections that connected badly with the bulk of 
the reflections. The present method immediately indicated a 
group of reflections most of which had been found to be 
important by laborious tracing of many alternative starting 
sets (Andrews & Koenig, 1978). The other indicated 
reflections were also useful. 
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Brookhaven National Laboratory under contract with the 
US Department of Energy and supported by its Office of 
Basic Energy Sciences. 
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Abstract 

Experimental absorption data from different authors are 
commented on and, critically evaluated, presented in a table. 

In a paper published two years ago, Lawrence (1977) 
contributed two experimental absorption coefficients for Si 
measured at the wavelengths of Cu K~ and Mo Kit [data (a) 
in Table 1] and made the statement that 'no recent experi- 
mental determination of the absorption coefficient of silicon 
appears to have been carried out'. One year later, Suorrti 
(1978) tried to explain the apparent deviation of the 
measured values from the data given in International Tables 
for X-ray Crystallography [ 1974; marked ( f )  in Table 1 ]. 

Evidently, both authors were not aware of extended 
measurements of X-ray absorption coefficients in the range 5 
to 25 keV which have been published from 1973 to 1976, 
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mainly in Z. Naturforsch., and of a recent extension of the 
measurements to 50 keV, so important for experiments with 
synchrotron radiation, presented in the same journal in 1977. 

Table 1. Comparison of attenuation coefficients, /10(cm-' ), 
for Si and Ge at Cu Ka and Mo Ka wavelengths 

Line E (keY) 

Cu Ka 8.041 
Mo Ka 17.44 

Cu Ka 8.041 
Mo K(t 17.44 

Si 

132.4 a 144 b 144.9 c 143.9 e 152.0 / 
14.18 a 14.6 b 14.4 a 14.58 e 15.21 / 

Ge 

354 b 352 ~ 353.9 e 361.6Y 
320 ~ 318 ~ 320.2 ~ 321.9 / 

References: (a) Lawrence (1977); (b) Hildebrandt, Stephenson & 
Wagenfeld (1973); (c) Gerward & Thuesen (1977); (d) Pike (1941); 
(e) interpolated from Table 2; ( f )  International Tables for X-ray 
Crystallography (1974); (g) Persson & Efimov (1970). 

© 1979 International Union of Crystallography 


